
Review

Milad Ashrafizadeh1,2,*
1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, Chin

Cell Death Mechanisms in Human Cancers: Molecular Pathways, Therapy
Resistance and Therapeutic Perspective

a
2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong
Academy of Medical Sciences, Jinan, Shandong 250000, China

*Corresponding author: Milad Ashrafizadeh, dvm.milad1994@gmail.com

1. Introduction

A multifaceted chronic disease is cancer with abnormal
proliferation and it is a challenging disease in the recent
years. In spite of the advances in the understanding the
underlying mechanisms involved in the progression of
cancer [1,2], it continues to be a major threat to the
human health and both diagnosis and treatment of
cancer are in priority. The genomic mutations and
cellular abnormalities can cause the tumorigenesis. The
number and type of mutations are different based on the
cancer kind and even in the patients with a specific type
of cancer, challenging the development of universal
treatments for cancer and the need for the precision
medicine that has been a hot topic in the recent years [3-
5]. One of the main challenges in cancer is the diagnosis
that they are asymptomatic in early stages or have
general symptoms. Therefore, most of the tumors are
diagnosed in the advanced stages with poor response to
therapy. As a focus, the attention has been directed
towards the development of novel therapeutics in cancer
such as application of nanoparticles in cance
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Cancer is considered as one of the leading causes of death after cardiovascular
diseases. Until now, various kinds of therapeutic modalities have been introduced
for the treatment of cancer including chemotherapy, surgical resection, radiotherapy
and immunotherapy. However, efficacy of these therapeutics have been reduced due
to the resistance development. As a result, the attention has been paid towards the
development of novel therapeutics for cancer. Regarding the genomic and epigenetic
changes in the tumor cells as well as dysregulation of biological processes, it is
suggested to develop therapeutics based on targeting. In the recent years, the
dysregulation of cell death mechanisms has been highlighted in human cancers,
capable of regulating proliferation, metastasis and therapy resistance. In the present
review, a special focus will be on the abnormal changes in the cell death pathways in
solid and haematological tumors, related molecular pathways, association with
tumorigenesis and therapy resistance. The induction of apoptosis can reverse
tumorigenesis and promote drug sensitivity. Apoptosis and necroptosis share some
features such as caspases and they may be stimulated simultaneously. Moreover,
regulation of autophagy can affect carcinogenesis and other cell death pathways
such as ferroptosis, apoptosis and immunogenic cell death. Ferroptosis induction is
based on iron changes and increase in lipid peroxidation that decreases cancer
progression. Immunogenic cell death is of importance in cancer therapy, as it can
activate dendritic cell maturation and improving the activity of T cells in cancer
immunotherapy. Furthermore, pyroptosis has also a similar function in cancer
therapy and in addition of being a cell death pathway, it is able to stimulate immune
reactions. Various kinds of cell death regulators have been developed including
small molecules, natural products and nanoparticles that can be further utilized in
the clinical studies for the treatment of cancer patients.
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phototherapy and immunotherapy [6,7] as well as
regulation of cell death mechanisms [8,9].

The cell death mechanisms contribute to the elimination
of damaged cells to provide homeostasis and they show
dysregulation in pathological events [10]. Based on the
morphology, biochemistry and function, the cell death
mechanisms can be divided into accidental cell death
and regulated cell death (RCD) [11]. In response to the
damaged stimuli, the accidental cell death can occur
[12]. On the other hand, the RCD is modulated by the
molecular pathways and it contributes to the
developmental stages and tissue renewal [13]. Although
apoptosis was the first recognized cell death, the
advances in science led to the identification of other cell
death pathways including necroptosis, pyroptosis,
ferroptosis, and cuproptosis that can occur in response
to exogenous environmental or intracellular disruptions
[14-16]. On the other hand, the tumor cells have shown
potential in the evasion of cell death pathways [17].
Moreover, RCD participates in the evaluation of
prognosis in cancer patients and the regulation of
tumorigenesis, metastasis and immune surveillance [18-
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23]. The various kinds of RCD have been recognized to
mediate changes in the tumor microenvironment (TME)
through the release of PAMPs or DAMPs for cancer
therapy [24-26]. Therefore, the present review is
dedicated to understand the role of cell death
mechanisms in cancers.

2. Apoptosis in Cancer

2.1 An overview of Apoptosis Mechanism

The apoptosis word was first coined in 1972 by Kerr,
Wyllie, and Currie that they tried to report a unique kind
of cell death pathway in spite of the fact that apoptosis
regulators have been understood already in the previous
year’s [27-30]. The knowledge towards the apoptosis
mechanisms emanates from the evaluation of cell death
in the development of Caenorhabditis elegans [31].
Since then, apoptosis was widely approved as a distinct
kind of cell death and it is also worth mentioning that
other kinds of cell death mechanism have been
understood and there are also others that have not been
described [32-34]. The apoptosis mechanism commonly
occurs during the developmental processes and aging.
Moreover, apoptosis is recognized as a mechanism
participates in the tissue homeostasis. There are several
conditions in which apoptosis can occur including
during immune reactions or the presence of damage to
the cells as a result of disease or toxic compounds [35].
Apoptosis has a number of characteristics including
membrane blebbing, cell shrinkage, nuclear
fragmentation and DNA fragmentation [36]. Apoptosis
can be categorized into intrinsic and extrinsic pathways

(Figure 1) [37]. In the intrinsic pathway of apoptosis,
there are a number of stimuli including DNA damage,
oxidative damage and lack of growth factors to mediate
apoptosis. The balance of pro- and anti-apoptotic
proteins such as BCL-2 family can determine the
intrinsic pathway of apoptosis. The pro-apoptotic
proteins mainly include BAX and BAK, while anti-
apoptotic proteins include BCL-2, BCL-XL and MCL-1.
The presence of the signals including DNA damage and
oxidative damage can induce pro-apoptotic proteins and
their translocation into mitochondria to cause loss of
mitochondrial membrane potential. Upon this,
cytochrome C is released from mitochondrial membrane
into cytosol and then, cytochrome C is attached to Apaf-
1 in the cytoplasm. This causes the generation of
apoptosome to recruit and induce pro-caspase-9 and
transform it into active caspase-9. The active caspase-9
stimulates the caspase cascade by inducing caspase-3
and caspase-7. More information regarding apoptosis in
cancer can be found in these reviews [38-40]. The
attachment of death ligands including FasL, TRAIL and
TNF-α to the death receptors (DR4 and DR5) on the
surface of cells can mediate the extrinsic pathway of
apoptosis through the formation of DISC complex
comprised of FADD and procaspase-8/10. At the next
step, DISC participates in the induction of caspase-3, -6
and -7 to mediate cell death or induces BCL-2 cleavage
to accelerate mitochondria-induced apoptosis [37]. In
spite of versatile function of apoptosis in the
physiological processes and preserving homeostasis, the
increasing evidences have shown that dysregulation of
apoptosis can lead to the development of diseases and
cancer [41-45].

Figure 1. The intrinsic and extrinsic pathways of apoptosis. In the intrinsic pathway of apoptosis, the increase in the levels of
apoptotic proteins such as BAX and BAK, and the downregulation of BCL-2 can cause mitochondrial membrane potential loss to
release cytochrome C. Then, cytochrome C interacts with Apaf-1 protein to generate apoptotosomes. At the next step, the caspase-9
is recruited to induce caspase-3/7 to mediate apoptosis. In the extrinsic pathway of apoptosis, the attachment of ligands to death
receptors can cause the formation of FADD and pro-caspase-8 complex. Then, active form of caspase-8 is formed to induce caspase-
3/7 cascade for the induction of apoptosis.
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2.2 Apoptosis Dysregulation in Cancer

Regarding the importance of apoptosis induction in the
treatment of cancer, a number of studies have focused
on the factors modulating apoptosis. Notably, various
kinds of apoptosis regulators demonstrate dysregulation
in cancer that their targeting can provide valuable
insights in tumor suppression. TRIM17 has been shown
to enhance the viability of gastric cancer cells and it is
able to reduce stability of BAX through increasing its
ubiquitination to reduce apoptosis [46]. One of the
regulators of apoptosis in cancer is autophagy that is
discussed in further details in next section. Notably, the
induction of protective autophagy can increase the
tumorigenesis though apoptosis inhibition. At the final
stage of autophagy, there is a need for the fusion of
autophagosomes and lysosomes. Therefore, the
suppression of autophagosome-lysosome fusion via
SNAP29 O-GlcNAcylation can enhance apoptosis
through enhancing ROS generation [47]. The reduction
in apoptosis can disrupt the response of tumor cells to
chemotherapy. Therefore, the function of galectin-7 in
enhancing cisplatin sensitivity in cervical tumors is
related to the induction of apoptosis and enhancement in
the degradation of G3BP1 [48]. The upregulation of Akt
has been suggested as a mechanism to reduce apoptosis
in the tumor cells. Therefore, suppression of
PI3K/Akt/mTOR axis and increase in Akt ubiquitination
can elevate apoptosis in gastric tumor [49]. Two other
important regulators of apoptosis in cancer include
MAPK and XIAP. Notably, the inhibition of XIAP and
the downregulation of MAPK can enhance apoptosis in
the treatment of oral tumor [50]. The epigenetic changes
are the most common reasons of tumorigenesis. Among
them, the alterations in the levels of long non-coding
RNAs (lncRNAs) can affect the important biological
mechanisms in the human cancers, especially apoptosis.
Notably, lncRNA TM4SF1-AS1 has been shown to
sequester RACK1 and enhance stress granule formation
in preventing apoptosis in tumor [51]. Furthermore, the
downregulation of lncRNA SBF2-AS1 can increase
PTEN levels to mediate apoptosis in colorectal tumor
[52]. The main pathway for the induction of apoptosis in
the tumor cells is to increase oxidative stress. However,
there are a number of antioxidant factors in the cells
preventing oxidative damage in increasing
tumorigenesis. The increase in the degradation of GPX4
through ubiquitination can enhance apoptosis in
hepatocellular carcinoma [53]. The direct upregulation
and induction of BAK can also mediate apoptosis [54].
Therefore, both direct and indirect mechanisms can be
applied for the induction of apoptosis in human cancers.

The irradiation has been shown to cause apoptosis in
tumor cells. For instance, carbon ion irradiation can
mediate DNA damage to cause apoptosis [55]. LED
irradiation can also impair tumorigenesis and cause
damage in the tumor cells through DNA damage-related
apoptosis [56]. Notably, the application of
hypofractionated irradiation can cause apoptosis in head
and neck cancer cells and improves their accumulation
by M1-like macrophages [57]. Another mechanism is
that irradiation mediates endoplasmic reticulum stress to

promote apoptosis and induces JNK phosphorylation in
the treatment of cervical cancer [58]. Furthermore,
diode irradiation has been shown to supress Akt/mTOR
axis in promoting apoptosis in pancreatic cancer [59].
The irradiation can cause synergistic impact with
chemotherapy such as low-frequency ultrasound
irradiation that facilitates paclitaxel-mediated apoptosis
[60]. However, the tumor cells can obtain resistance into
radiation effects and in this case, the combination
therapy is suggested to promote radiosensitivity and
apoptosis [61].

Although apoptosis is a kind of cell death mechanism,
there are evidences shown that apoptosis can
demonstrate interaction with invasion and metastasis of
cancer. The downregulation of UBR5 can increase the
levels of CDC73 and p53 to facilitate apoptosis in the
breast tumor cells and prevent their lung metastasis [62].
In addition to the molecular pathways capable of
apoptosis regulation in cancer, targeting the organelles
related to apoptosis can affect this cell death. Notably,
the induction of mitochondrial dysfunction can enhance
apoptosis in gastric tumor [63]. This is maybe related to
the impact of mitochondrial dysfunction on the ROS
production that can finally enhance oxidative damage
and predispose the tumor cells to apoptotic cell death.
The upregulation of AZGP1 in choalngiocarcinoma can
downregulate TRIM25 to enhance apoptosis [64]. The
regulation of apoptosis in cancer chemotherapy. In
reversing cancer drug resistance, DYRK2 is able to
accelerate p53-induced apoptosis to enhance
chemosensitivity [65]. This has been also confirmed in
other studies showing that suppression of BET and NAE
can enhance BIM-mediated apoptosis [66]. In order to
overcome the progression of ovarian tumor, the
upregulation of FNDC4 has been followed to facilitate
apoptosis and suppress proliferation [67].

2.3 Therapeutic Modulation of Apoptosis in Cancer

Since the induction of apoptosis can impair the
tumorigenesis, several strategies have been developed
for the induction of apoptosis. One of the most
important ones is the application of natural products and
drugs for the induction of apoptosis. Phytochemicals
demonstrate multi-targeting and desirable
biocompatibility. Therefore, the induction of apoptosis
by these natural products can pave the way for the
treatment of cancer. Acevaltrate is able to reduce the
expression levels of HIF-1α in enhancing apoptosis and
reducing growth of tumor [68]. Morusin is also able to
increase the levels of p53 and p21 along with
upregulation of PARP and caspase-3 to enhance
apoptosis in melanoma therapy [69]. The direct
regulators of apoptosis can be also regulated by anti-
cancer compounds. Notably, cowanin is able to
accelerate apoptosis and necrosis through the
downregulation of BCL-2 to disrupt progression of
breast tumor [70]. Lung cancer is one of the leading
causes of death and in spite of the introduction of
several strategies for its treatment, the tumor cells have
been able to mediate drug resistance. Therefore, the
natural products have been significantly applied in the
treatment of lung cancer [71]. Another valuable
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compound in the treatment of cancer is baicalein
capable of decreasing glutamine synthesis and
suppressing mTOR axis to enhance apoptosis in the
treatment of lung cancer [72]. Therefore, natural
products are promising compounds for the treatment of
lung cancer [73,74].

One of the most common compounds in the treatment of
cancer is curcumin. Curcumin is derived from the
Curcuma longa and it has been used for the treatment of
different tumors including breast [75], lung [76],
prostate [77], bladder [78], brain [79], gastric [80] and
colorectal [81,82] tumors, among others. In order to
improve the potential of curcumin in cancer therapy, the
analogs of this compound have been developed.
L48H37 is a curcumin analog capable of inducing
caspase cascade and upregulation of MAPK to facilitate
apoptosis in oral tumor [83]. The stimulation of both
apoptosis and ferroptosis by platinum(IV) complexes
has been shown to be beneficial in overcoming
oxaliplatin resistance in colon tumor [84]. The BCL-2
downregulation and BAX upregulation are the most
common pathways for the induction of apoptosis in
cancer therapy [85].

Atractylodes macrocephala is a popular plant that has
been utilized with other Chinese medicines for the
cancer therapy [86]. Atractylenolide II (AT-II) is a
bioactive compound derived from the Rhizome of
Atractylodes macrocephala, that has a number of
biological activities in the treatment of cancer [87]. AT-
II impairs the proliferation and invasion, it mediates
apoptosis and it overcome drug resistance in human
cancers [88-93]. AT-II downregulates PADI3/ERK axis
to mediate apoptosis and disrupt glycolysis in the
treatment of endometrial cancer [94]. However, a

number of compounds can regulate both apoptosis and
autophagy in cancer such as cannabidiol [95]. The high
expression of ASCT2 is a hurdle towards the apoptosis
induction. Lobetyolin can decrease ASCT2 levels to
mediate apoptosis and impair growth of gastric tumor
cells [96]. According to the studies, the introduction of
natural products and compounds in the treatment of
cancer can be based on apoptosis induction [97-100].
The changes induced in the metabolism of cancer cells
can also mediate apoptosis. Notably, erianin has been
shown to suppress function of Akt in glycolysis to
facilitate apoptosis in tumors [101]. In spite of the
promises provided by the natural compounds, they
suffer from poor pharmacokinetic profile and therefore,
the application of nanoparticles can improve their
therapeutic index and enhance apoptosis. Moreover,
sometimes, phytochemicals mediate protective
autophagy along with apoptosis [102] that in this case,
the suppression of autophagy promotes apoptosis in
cancer therapy. In the recent years, nanostructures have
been also utilized for the induction of apoptosis in
cancer [103]. Notably, the nanostructures can be
assembled by the function of copper and from the
photosensitizer Zinc Phthalocyanine (ZnPc)-
chemotherapeutic (DOX) prodrug with a thioketal (TK)
spacer and an IDO inhibitor (1-methyl tryptophan, 1-
MT) as building blocks for Cu2+-coordination self-
assembly. These nanostructures were able to induce
apoptosis, cuproptosis and accelerate immunotherapy.
The laser irradiation enhances the ROS production to
promote function of DOX in apoptosis induction.
Moreover, Cu2+ can mediate the accumulation of toxic
agents in the mitochondrial to promote cuproptosis
[104]. The importance of apoptosis in cancer has been
shown in Figure 2.

Figure 2. The different stages of apoptosis and importance of apoptosis in cancer. Apoptosis is morphologically identified by the cell
shrinkage and chromatin condensation. Then, nuclear fragmentation and membrane blebbing occur to finally generate apoptotic body.
The induction of apoptosis has been beneficial in overcoming therapy resistance and causing synergistic effect with other
therapeutics such as chemotherapy, radiotherapy and immunotherapy.
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According to these discussions, the therapeutic
regulation of apoptosis is of importance for combination
cancer therapy such as along with immunotherapy to
improve treatment efficacy. The apoptosis-inducing
agents can be loaded on nanostructures to selectively
target tumor cells for reducing damage to healthy tissues.
In order to improve the efficacy in targeting apoptosis,
the agents can be developed for modulating the specific
apoptosis pathways such as intrinsic and extrinsic
pathways through modulation of BAX and BCL-2
proteins. However, there are still a number of
limitations regarding targeting apoptosis including the
resistance mechanisms. The side effect is still a
challenge in which selective targeting of cancer cells
and lacking impact on normal cells should be improved.
Moreover, since different pathways can regulate
apoptosis, it is completely challenging to develop
universally effective therapeutics.

3. Autophagy in Cancer

3.1 An Overview of Autophagy Mechanism

The eukaryotic cells rely on autophagy for preserving
the physiological homeostasis [105]. The first
recognition of autophagy in mammalian cells is in
1960s and then, it was discovered in Saccharomyces
cerevisiae in the early 1990s [106]. In this time, the role
of autophagy-related genes (ATG) and the functional
protein complexes were recognized [107]. Then, more
progress was made in understanding the role of
microautophagy in S. cerevisiae and other yeast species
[108]. Autophagy is a highly evolutionary conserved
mechanism capable of sequestering the superfluous,
aging or damaged the cytoplasmic materials and deliver
it to the lysosomes for the degradation [109]. These
cytoplasmic components are degraded into the
structures known as autophagosomes as double-
membrane compartments and their cargo can be
endogenous including redox-active protein aggregates
or exogenous including cytoplasmic bacteria [109,110].
The mechanism of autophagy depends on the lysosomal
degradation [111]. The basal levels of autophagy are
maintained at the physiological conditions, while it can
respond to stimuli such as nutritional, metabolic,
hormonal, physical, chemical and biological cues
[112,113]. The induction of autophagy in these
conditions is essential for adapting to stress and
supporting the cellular viability. In line with this, the
genetic tools and pharmacological compounds have
been developed to suppress autophagy for enhancing
death in the conditions of lethal perturbations of
homeostasis [114-116]. The biological function of
autophagy has been understood in the recent years and
its dysregulation can be observed in aging-related
disorders [117], kidney homeostasis [118], neurological
diseases [119], cardiovascular diseases [120], diabetes
[121] and cancer [122,123].

Autophagy or macroautophagy is suggested to be a
homeostatic process to trigger the degradation of
cellular components [122]. The autophagy-related genes
(ATGs) contribute to the generation of autophagosomes

as double-membrane compartments for engulfing the
cargo and subsequent delivery to lysosomes [124].
UNC-51-like kinase 1 (ULK1) and ULK2, FIP200,
ATG13 and ATG101 comprise the ULK complex to
induce autophagosome generation and it also interacts
with mTORC1. VPS34, Beclin-1, ATG14 and VPS15
comprise the VPS34 complex to facilitate the generation
of PI3P on the membrane of autophagosomes. The
stimulation of ATG16L1–ATG5–ATG12 complex,
ATG3 and ATG7 occurs by PI3P to further proceed the
autophagosome maturation [107,125].

3.2 Autophagy in Cancer

In cancer, the function of autophagy is not certain and
the studies have shown that autophagy can be
considered as a multifunctional mechanism that not only
regulates cancer hallmarks (proliferation, metastasis and
chemoresistance), but also has dual function in tumors
[126-128]. This double-edged sword function of
autophagy has been of importance and the tumor-
suppressor function of autophagy can emanate from its
role in removal of oncogenic factors, elimination of
unfolded protein and damaged organelles [129]. The
tumor-promoting function of autophagy is related to
increasing survival, accelerating cancer metabolism and
acting as a supportive factor. The therapeutic regulation
of autophagy can impair tumorigenesis. Notably,
tanshinone I has been shown to stimulate both apoptosis
and autophagy that can result from downregulation of
PI3K/Akt/mTOR [130]. A number of changes in the
tumors can also facilitate the induction of autophagy.
The increase in mitochondrial fusion by Mfn2 can
upregulate AMPK to induce autophagy and reduce ROS
levels in impairing tumorigenesis [131]. On the other
hand, the supportive autophagy can enhance cancer
progression. CircRAB11FIP1 has been shown to
sequester miR-129 in overexpressing ATG7 and ATG4
to induce oncogenic autophagy [132]. The PSMD14
enhances LRPPRC stability to impair autophagy in
enhancing progression of ovarian tumor [133]. The
therapeutic compounds have been utilized to regulate
autophagy. Nitidine chloride has been shown to
stimulate apoptosis and autophagy through
downregulation of Akt/mTOR [134]. However, the
function of autophagy is not always tumor-suppressor
and there should be caution regarding its induction or
inhibition. An example is the function of matrine that
suppresses Akt/mTOR axis, but it mediates supportive
autophagy [135]. Another confirmation is that Cx32
upregulates AMPK to induce supportive autophagy for
decreasing apoptosis [136]. This highlights the fact that
autophagy and apoptosis demonstrate interaction in the
regulation of carcinogenesis.

One of the most common gynaecological tumors is
cervical cancer [137]. In spite of the application of
radiotherapy and immunotherapy, there is still risk of
metastasis and relapse in cervical tumor [138,139].
MAP7 is able to increase tumorigenesis in cervical
cancer and in this case, MAP7 regulates autophagy to
induce EMT and increase metastasis [140]. In addition,
the 5-year survival rate of cervical cancer is
unfavourable [141]. The human papillomavirus (HPV)
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is also a risk factors for the development of cervical
cancer [142]. However, the changes in the genomic and
epigenetic levels can cause the progression of cervical
cancer. DARS-AS1 promotes the recruitment of
METTL3/METTL14 to trigger mRNA m6A
modification in DARS for mediating supportive
autophagy in cervical cancer progression [143].
Silencing LINC00511 has been shown to enhance
autophagy and apoptosis in cervical tumor [144].

The circular RNAs (circRNAs) are a class of non-
coding RNAs with covalently closed loop structure
lacking 5′ caps and 3′ tails [145]. The circRNAs
demonstrate resistant to exonucleases and they possess
high stability compared to liner RNAs [146]. Therefore,
the circRNAs can be used as reliable biomarkers in
cancer diagnosis and therapy [147,148]. The circCDYL
demonstrates 3.2-fold upregulation in breast tumor
compared to healthy tissues and through regulating
miR-1275, it upregulates ATG7 and ULK1 to mediate
autophagy in carcinogenesis [149]. Therefore,
autophagy demonstrates a versatile function in the
regulation of tumorigenesis [150-154]. Regarding the
advances in the field of biology, different regulators of
autophagy have been identified including
MCOLN1/TROML1 [155], NEO212 [156], miR-106a
[157], miR-152-3p/NCAM1/ERK [158] and ALK [159],
among others. Furthermore, the different kinds of
autophagy regulators have been introduced in cancer
therapy including Anlotinib [160], Qiyusanlong
Formula [161], carnosic acid [162], TCM Prescription
Yi-Fei-Jie-Du-Tang [163] and Bai-He-Gu-Jin-Tang
formula [164], among others. In the recent years,
nanoparticles have been significantly applied in the
treatment of cancer [6]. This approach has been also
encouraged for the autophagy modulation and therefore,
Pt(IV)/CQ/PFH nanostructures can release chloroquine
to impair supportive autophagy in promoting tumor
suppression [165].

3.3 Autophagy in Cancer Drug Resistance

Regarding the function of autophagy in tumorigenesis, a
number of studies have focused on understanding the
role of autophagy in cancer drug resistance. As a well-
known autophagy suppressor, chloroquine has been
shown to suppress autophagy and enhance p21 levels in
ovarian cancer suppression [166]. Autophagy is not only
related to the cancer cells and it can also affect the
cancer stem cells. The suppression of pro-survival
autophagy can impair drug resistance and promote the
potential in the inhibition of cancer stem cells [167].
However, the function of protective autophagy is
different and it can enhance drug sensitivity. The
presence of endoplasmic reituclum stress can stimulate
both apoptosis and autophagy to overcome
chemoresistance [168]. The smoking has been shown to
be associated with tumorigenesis. Notably, the presence
of -(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK) is a risk factor for cancer progression. NNK is
able to develop a feedback loop of β2AR-Akt to
mediate autophagy in enhancing drug resistance in
pancreatic cancer [169].

The SH3 domain binding glutamate-rich protein-like,
also known as SH3BGRL that can mediate protein-
protein interaction in the regulation of molecular and
cellular events [170]. SH3BGRL is able to mediate
central nervous system formation and intestine of
zebrafish as well as pathogenesis of Parkinson’s disease
[171,172]. The increasing evidences have shown the
upregulation of SH3BGRL in the different human
tumors including breast tumor [173-175]. In breast
tumor, SH3BGRL has been shown to mediate drug
resistance. SH3BGRL upregulates PI3KC3 and
enhances ATG12 stability to mediate drug resistance
through autophagy induction [176]. The interactions
occurring among the epigenetic factors can also mediate
the drug resistance and modulate autophagy. The circ-
0023404 is able to sequester miR-5047 in upregulating
VEGFA and mediating pro-survival autophagy to
facilitate chemoresistance in cervical tumor [177]. The
function of autophagy in the induction of drug
resistance in human cancers is related to the
coordination of metabolism, cell cycle and survival
[178]. As anti-cancer agent, cirsiliol is able to impair the
AKT phosphorylation to enhance FOXO1 levels. This
compound also induces autophagy and disrupt
carcinogenesis of osteosarcoma [179]. Notably, the
copper nanoparticles have been shown to be potent
inducers of apoptosis. The copper nanostructures can
cause oxidative damage through ROS generation and
they promote BAX and p53 levels in apoptosis
induction [180]. The copper nanoparticles can deliver
chrysin to induce cell death through downregulation of
MAPK/NF-κB axis [181].

One of the factors involved in the induction of pro-
survival autophagy in cancer is ATG2B. The miR-375
has been shown to suppress progression of
ostesosarcoma. MiR-375 is able to downregulate
ATG2B in suppression of autophagy and impairing the
progression of osteosarcoma cells resistant to cisplatin
[182]. Increasing evidences demonstrate that autophagy
participates in the development of cisplatin resistance in
human cancers. Therefore, the various experiments have
evaluated the role of autophagy in cisplatin resistance.
The inhibition OGT in ovarian cancer can cause
cisplatin resistance and this emanates from the increase
in SNARE complex formation and induction of
autophagic flux [183]. The function of autophagy in the
induction of cancer drug resistance has been shown in
the different tumors including pancreatic tumor [184],
hepatocellular carcinoma [185], glioblastoma [186],
ovarian cancer [187] and breast tumor [188], among
others (Figure 3).

Exploiting the dual function of autophagy as tumor-
promoting and tumor-suppressing factor through
stimulation and suppression of this pathway can provide
significant therapeutic results. As an example, the
suppression of pro-survival autophagy at the early stage
of tumorigenesis can promote apoptosis and at the other
stages, the induction of autophagy can participate in the
elimination of damaged cells and decreasing
inflammation. The combination of autophagy
modulators along with chemotherapy, immunotherapy
and radiotherapy can exert synergistic impacts and
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decrease the resistance risk. On the other hand, there are
also a number of limitations for targeting autophagy in
cancer therapy such as the dual function of autophagy,
making it troublesome to regulate autophagy in cancer
therapy. Moreover, the cancer cells have shown ability

to develop resistance into autophagy, reducing the
efficacy of autophagy modulators in cancer therapy.
Notably, the prolonged inhibition or induction of
autophagy may negatively affect the healthy tissues.
Therefore, the side effects should be considered.

Figure 3. The double-edged sword function of autophagy in cancer. One of the most intriguing cell death mechanisms is autophagy
with different function ranging with anti-cancer activity in the pre-cancerous lesions to tumor-promoting function in the advanced
stages of carcinogenesis. The various kinds of therapeutics including small molecules, natural products and nanoparticles have been
exploited for the regulation of autophagy in cancer therapy. Moreover, autophagy can regulate immune system through affecting T
cells, dendritic cells and other immune cells for cancer immunotherapy.

4. Necroptosis in Cancer

4.1 Necroptosis Machinery

Necroptosis is considered as a caspase-indepepdent cell
death and it was discovered at the end of 20th century
[189]. The cells undergoing necroptosis demonstrate a
number of characteristics including organelle swelling,
plasma membrane rupture and element leakage whithin
the cells as damage-associated molecular pattern
(DAMP) to cause inflammation [190]. Along with pro-
inflammatory function, necroptosis has been shown to
interact with innate immune mechanisms that along with
apoptosis, participates in the elimination of pathogens.
Necroptosis can be affected by receptor interacting
protein kinase 3 (RIPK3) and mixed lineage kinase
domain-like protein (MLKL) [191]. The ligands are able
to bind to TNFR1 to mediate necroptosis through
enhancing the activity of their cytoplasmic adaptor
proteins. These receptors can increase the
autophosphorylation of receptor-interacting protein
kinase 1 (RIPK1) and assembly into RIPK3 [192]. The
dysregulation of necroptosis has been observed in the
different conditions and it is a therapeutic target for the
treatment of different pathologies including cancer
[193,194], cardiovascular diseases [195,196],
inflammatory diseases [197] and diabetes [198].

Moreover, the selective regulation of necroptosis has
been provided by nanoparticles in the disease therapy
[199,200].

As an inflammatory cell death, necroptosis has been
identified as another kind of apoptosis through engaging
death domain receptors [201]. The necroptosis is a kind
of nonapoptotic form of death and the canonical
pathway for its induction involved RIPK1-RIPK3-
MLKL that can mediate the downstream of death
domain receptors including TNFR and Fas, as well as
TLR3/4 [202-205]. The active form of RIPK1 is
recruited in an oligomeric complex including FADD,
caspase-8 and caspase-10. When caspase-8 is absent,
RIPk1 can stimulate RIPK3 phosphorylation to generate
ripoptosome that further induces MLKL
phosphorylation in the formation of necrosome. Then,
MLKL oligomers demonstrate potential in the induction
of pores in the cell membrane for increasing ion influx,
cell swelling and triggering membrane lysis [204-207].
ZBP1 and TRIF as RHIM-domain containing proteins
have shown attachment to RIPK3 to enhance
necroptosis independent of RIPK1 [208,209].

4.2 Necroptosis in Carcinogenesis

RIPK3 shows absence of reduction in the cancer cells
[18,210,211]. Particularly, the poor expression of
RIPK3 is observed in the two-third of cancer cells [210].
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The downregulation of RIPK3 can be found in the
breast cancer [210,212], colorectal tumor [213,214],
leukemia [215,216] and melanoma [211]. Furthermore,
Hockendorf and colleagues [215] demonstrated
silencing RIPK3 increases leukemogenesis in mice.
Moreover, low expression of RIPK3 has been shown to
diminish DFS (disease-free survival) and OS (overall
survival) in cancer patients [213]. Silencing RIPK3 has
been shown to enhance the risk of colitis-associated
colorectal cancer and mediate the generation of pro-
inflammatory factors or oncogenic mechanisms [217].
In breast cancer patients, poor expression of RIPK3 can
mediate poor prognosis [210]. Therefore, necroptosis is
able to mediate anti-inflammation and anti-cancer
function. The genomic methylation or hypoxia may
participate in the RIPK3 downregulation in tumors
[210,214,218].

Notably, there is an interaction between necroptosis and
anti-cancer immunity [219-221]. The cells undergoing
necroptosis demonstrate the induction of immune
system and they can promote antigen presentation and
activation of CD8+ T cells [222,223]. Moreover, Aaes
and colleagues in 2016 demonstrated that necroptosis in
cancer is similar to immunogenic cell death (ICD) [224].
The phagocytosis of necroptotic cancer cells can result
in the induction of dendritic cell maturation [224]. The
role of necroptosis in the anti-cancer immunity has been
shown in vitro and in vivo through their potential in
enhancing CD8+ T proliferation [224]. The investigation
of underlying mechanisms has shown that necroptotic
cells are able to mediate progression of tumor and this
requires the BATF3+ cDC1 cells and CD8+ leukocytes
[225]. In order to mediate necroptosis in cancer, a
number of therapeutic compounds have been utilized
[226]. Notably, the factors capable of induction of
apoptosis in cancer cells have shown also potential in
the regulation of necroptosis including staurosporine
[227] or cisplatin [228,229].

Necroptosis has shown a dual function in the regulation
of cancer metastasis [230]. The RIPK3 deficiency has
been shown to decrease the number of nodules by 38%
in lung tumor [231]. On the other hand, the upregulation
of MLKL has been shown to mediate low histological
grade and increase in lymphatic metastasis in cervical
cancer, providing the unfavourable prognosis [232]. It is
worth mentioning that tumor cells are able to mediate
necroptosis in the endothelial cells for enhancing
metastasis [233]. The pancreatic cancer cells undergoing
necroptosis have been shown to upregulate CXCL5 and
CXCR2 in enhancing metastasis and migration [234].

Since necroptosis has the ability to mediate
inflammatory storm, it suggested to use this
inflammatory reaction to improve anti-cancer immunity
and combine it with immune checkpoint inhibitors in
accelerating immunotherapy. Moreover, the application
of combination therapy to stimulate both apoptosis and
necroptosis can decrease risk of resistance. However,
there are still a number of limitations including
abnormal and uncontrolled limitation that may be
induced necroptosis causing damage in the healthy
tissues. Furthermore, the underlying mechanisms

regulating necroptosis in cancer should be understood
more in the development of more novel therapeutics.
Furthermore, understanding the balance between
necroptosis stimulation for therapeutic aims and
reducing excessive inflammation is still challenging.

5. Ferroptosis in Cancer

5.1 Ferroptosis Machinery

The increase in iron levels and lipids peroxides on the
cellular membrane can lead to a type of cell death,
known as ferroptosis [235]. The ferroptosis mechanism
is different from other cell death mechanisms in terms
of morphological view and mechanisms regulation.
Morphologically, the ferroptosis mechanism do not have
the features of apoptosis including chromatin
condensation and apoptotic body formation, but they
demonstrate other features including shrunken
mitochondria and decreased number of mitochondrial
cristae [236,237]. The characteristic step for the
ferroptosis in the presence of lipid peroxides [238] and
it participates in the antagonism between ferroptosis
execution and ferroptosis defense system. The induction
of ferroptosis is observed when the ferroptosis-inducing
activities exceed than antioxidant defense system [239-
245]. Ferroptosis is a kind of cell death can be regulated
by iron-related phospholipid peroxidation. The
byproducts of cellular metabolism including oxygen and
iron can mediate ferroptosis through increasing the
production of ROS. If the levels of ROS increase and
the cells are not able to neutralize the ROS levels, it can
cause disruption of cell membrane integrity to mediate
ferroptosis [246]. This can create the notion that
antioxidant-related factors may be able to reduce
ferroptosis that one of them is glutathione peroxidase 4
(GPX4) [238]. In this way, Stockwell found that a
number of compounds are able to mediate a kind of cell
death distinct from apoptosis in 2003 [247]. Further
evaluation demonstrated that iron chelators and
lipophilic radical-trapping antioxidants (RTAs) can
prevent this kind of cell death [248]. Since this kind of
cell death depends on iron, the name of ferroptosis was
chosen [236]. It was mentioned that the suppression of
GPX4 and system xc− cystine/glutamate antiporter by
erastin and RSL3, respectively can be mediate
ferroptosis [236,239,249]. The GPX4 is a catalysing
enzyme capable of decreasing PLOOHs levels in the
mammalian cells [250,251]. In addition to GPX4, the
induction of phospholipid peroxidation can also mediate
ferroptosis. The lipid peroxidation is a hallmark of
ferroptosis and in 1950s, it was found that the inhibition
of lipid peroxidation can occur by selenium, vitamin E
and cysteine [252,253].

5.2 Ferroptosis Regulation in Cancer

The increasing evidences in the recent years have shown
that stimulation of ferroptosis is of importance for the
treatment of cancer [254-260]. The induction of
ferroptosis in human cancers can significantly impair
tumorigenesis and various kinds of underlying pathways
are involved. Notably, the inhibition of UTP11 has been
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shown to enhance nucleolar stress and ferroptosis
through reducing 18S rRNA biosynthesis and
decreasing MDM2-related p53 ubiquitination and
degradation by RPL5 and RPL11. The loss of UTP11
can also downregulate SLC7A11 through increasing
NRF2 levels in downregulation of GSH and promoting
ferroptosis [261]. The upregulation of BAP31 is
observed in gastric tumor and it mediates undesirable
prognosis. Silencing BAP31 can impair cancer growth
and mediate G1/S arrest. The downregulation of BAP31
can enhance lipid peroxidation and mediate ferroptosis
[262]. The co-suppression of CDK4/6 and BRD4 has
been shown to enhance senescence and it can accelerate
ferroptosis sensitivity [263].

The regulation of mitochondria has been shown to
control ferroptosis in cancers. METTL17 has shown
upregulation in colorectal cancer and it causes
ferroptosis resistance. METTL17 suppression can
enhance ferroptosis and disrupt proliferation and
metastasis. METTL17 suppression diminish the
methylation of DNA in mitochondria to block the
translation of mitochondrial protein-coding genes [264].
Therefore, one of the way for the regulation of
ferroptosis is affecting mitochondria and these
organelles participate in ferroptosis induction [265]. The
ferroptosis can be regulated by autophagy in human
cancers. One example is the function of erianin that can
enhance autophagy-induced ferroptosis in colorectal
cancer through enhancing Fe2+ levels, ROS generation
and enhancement in lipid peroxidation [266]. The
inhibition of ferroptosis can also increase the invasion
and metastasis of cancer cells. The loss of AMER1 has
been shown to suppress SLC7A11- and FTL-induced
ferroptosis to enhance the metastasis of colorectal tumor
[267]. One of the important aspects is the involvement
of ferroptosis in cancer immunotherapy. The methionine
deprivation in the intermittent periods can cause
ferroptosis and show synergistic impact with checkpoint
blockade [268]. STAT3 is a potent regulator of
ferroptosis in human cancers that upon nuclear
translocation, it increases levels of GPX4 and SLC7A11
to prevent lipid ROS in the inhibition of ferroptosis
[269]. Ferroptosis can exert the synergistic impact with
cancer immunotherapy. Notably, the downregulation of
PGAM1 can enhance the ferroptosis in hepatocellular
carcinoma and this causes synergistic impact with anti-
PD-1 immunotherapy [270]. Moreover, the combination
of ferroptosis induction along with suppressing
myeloid-derived suppressor cells can enhance the
sensitivity of metastatic tumor cells to immune
checkpoint blockade [271]. According to this, the
regulation of ferroptosis and other factors can
significantly improve the cancer immunotherapy [272-
274].

Although GPX4 targeting has been considered as a main
target in the regulation of ferroptosis, there are also
other factors that can be regulated. SMURF2 has been
shown to enhance ferroptosis in cancer and it can
function in an independent manner of GPX4 through
enhancing GSTP1 degradation [275]. Sometimes, GPX4
and other factors are simultaneously affected in the
induction of ferroptosis in cancer. One example is the

function of isoliquiritigenin that downregulates GPX4,
while increases HMOX1 levels to accelerate ferroptosis
in gallbladder cancer [276]. Furthermore, in some
cancers including colorectal tumor, the gut microbiome
can also suppress ferroptosis in acceleration of
tumorigenesis [277] that in this case, the composition of
gut microbiome can be regulated in cancer therapy.
Therefore, understanding the factors involved in the
ferroptosis in human cancers can provide novel and
valuable insights in cancer therapy [278,279]. Notably,
ferroptosis induction has been shown to enhance
immunotherapy of cancer [280]. An injectable gel has
been developed to deliver RSL-3 and PD-1 antibody
providing the prolonged release of cargo in cancer the
immunotherapy of pancreatic cancer and hepatocellular
carcinoma. The induction of ferroptosis promotes anti-
cancer immunity through enhancing the levels of helper
T lymphocytes and cytotoxic T cells [281].

5.3 Ferroptosis in Cancer Drug Resistance

The resistance of cancer cells to chemotherapy can be
also regulated by ferroptosis mechanism. The
stimulation of ferroptosis has been shown to
significantly increase the chemosensitivity. In this way,
the metal-organic frameworks have been developed to
suppress glutathione synthesis and deliver SLC7A11-
siRNA in enhancing ferroptosis and reducing drug
resistance in breast tumor [282]. The ferroptosis
mechanism can be inhibited in neuroblastoma. Notably,
the upregulation of TRIM59 can decrease the lipid ROS
production and reduce ferroptosis through enhancing
ubiqutination and degradation of p53 in developing drug
resistance [283]. Overall, the increase in lipid
peroxidation, decrease in glutathione levels through
SLC3A2 and GPX4 downregulation can mediate
ferroptosis to impair chemoresistance [284]. The
oxaliplatin resistance in colorectal tumor can be
mediated by the upregulation of RBMS1. Notably,
RBMS1 is able to accelerate prion protein translation to
prevent ferroptosis in oxaliplatin resistance [285]. The
interaction of autophagy and ferroptosis can also
determine the chemoresistance in human cancers.
Noteworthy, circHIPK3 has been shown to suppress
autophagy-mediated ferroptosis, accelerating cisplatin
resistance in gastric tumor [286].

The TME remodelling can cause the drug resistance in
human cancers. The cancer-associated fibroblasts
(CAFs) demonstrate high abundance in the TME and
they can secrete exosomes enriched with miR-522 to
downregulate ALOX15 for reducing ferroptosis and
causing paclitaxel and cisplatin resistance [287]. In this
case, it is suggested to increase ATF3 levels in the
induction of ferroptosis through suppressing
Nrf2/Keap1/xCT axis, enhancing cisplatin sensitivity in
gastric tumor [288]. The upregulation of Nrf2 or
increase in Nrf2 stability can decrease the oxidative
damage and reduce ROS levels that are a hurdle towards
the induction of ferroptosis, since this kind of cell death
can be mediated by the ROS accumulation and
subsequent lipid peroxidation. LINC00239 can increase
Nrf2 stability through Keap1 downregulation to reduce
ferroptosis in colorectal cancer [289] and regarding the
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risk of chemoresistance, this axis can be further targeted
for suppressing drug resistance in colorectal tumor.
Therefore, the studies highlight the function of
ferroptosis in the regulation of cancer drug resistance
[290-294].

The development and introduction of therapeutic
regulating iron metabolism and enhancing lipid
peroxidation can promote ferroptosis in tumor cells.
Moreover, the application of nanoparticles delivering
iron-chelating agents can enhance ferroptosis in tumor
cells. The application of ferroptosis inducers along with
antioxidant pathways such as GPX4 inhibitors can
accelerate ferroptosis in cancer cells. The excessive
induction of ferroptosis can promote iron overload and
it negatively affects the normal tissues, causing some
biosafety issues. Moreover, due to the heterogenous
nature of tumors, they have different responses to
ferroptosis inducers, challenging the efficacy of
therapeutics. Cancer cells have shown resistance to
ferroptosis inducers overtime, highlighting the urgency
of combination therapy.

6. Immunogenic Cell Death

Laureate Ilya Metchnikoff described that cell-induced
immunity awarded by the Nobel Prize [295]. Then, he
pursued the experiment on starfish larvae and
demonstrated the phagocytosis of foreign materials
responsible for innate immunity. From this point of
view, it can be considered as a response to injury by
host. Then, Polly Matzinger described a theory known
as “danger theory” in 1994 highlighting the capacity of
the immune system for the distinction between
dangerous and innocuous endogenous signals [296]. It
was further highlighted that the cells undergoing death
can release a number of factors capable of inducing
innate immune system [296-298], known as DAMPs
[298,299]. A number of DAMPs including ATP and
HMGB1 demonstrate secretion from the cells, while
other kinds of DAMPs demonstrate enrichment on the
surface of plasma membrane such as CRT and HSP90.
Moreover, a number of DAMPs can be generated as
end-stage degradation products including uric acid upon
cell death. These DAMPs demonstrate non-
immunological function when they are within the cells
and their function may be changed upon exposure to cell
surface or secretion [296,298]. The DAMPs do not
always trigger immune system and sometimes, a
number of DAMPs including HMGB1 may be inhibited
by oxidation [300] or proteolysis by IL-33 [301]. The
immunogenic cell death (ICD) is considered as a
hallmark of dying cells [302] and overall, the factors
including CRT, HMGB1, IFNs, ATP and heat shock
proteins are ICD-related molecules [303-305]. The
studies have shown that DAMPs have ability of
attracting immune cells including neutrophils,
macrophages, DCs and NKs via pattern recognition
receptors (PRRs) and capable of improving their
maturation/activation [306]. The mature DCs and γδT
cells have shown potential in the cross-priming of CD8+

T cells via IL-17 and IL-1β and the T cells produce
IFN-γ, perforin-1, and granzyme B to eliminate tumor

cells. The T cells mediate the antigen-specific adaptive
immune responses and these events are tightly regulated
to prevent autoimmunity [306].

ICD provides the new insights for the treatment of
human cancers. The induction of ICD can be mediated
by inducers as well as dying cancer cells functioning as
tumor vaccine [307]. This can provide a long-term
clinical benefits for the cancer patients in the clinical
level [308]. The immunogenic dead cells have shown a
number of hallmarks and they release a number of
molecules for interaction with APCs or other related
immune cells. These factors are known as DAMPs that
can mediate the vaccine impact of ICD [309]. Before
apoptosis, the immunogenic cells transfer CRT from the
perinuclear ER to the peripheral of cell and provide the
relocalization of ERp57 [310]. The exposure of
CRT/ERp57 complex to the surface of cells can provide
an “eat me” signal to mediate DC-induced phagocytosis
[305,311]. Furthermore, the CRT exposure on the
surface of tumor cells can mediatae antigen presentation
and tumor-specific CTL responses [305]. During ICD,
the release of ATP can function as an attraction for the
DC precursors [312]. This induces the P2X7 receptors
on DCs to activate NALP3‐ASC‐inflammasome and
mediate IL-1β secretion [313]. In breast tumor,
oleandrin has been shown to mediate ICD. Oleandrin is
able to increase surface exposure of CRT and mediates
the release of HMGB1, HSP70/90 and ATP to induce
ICD for enhancing maturation of DC cells to promote
the cytotoxicity of CD8+ T cells [314]. The inhibition of
ERO1A has been also shown to enhance RE stress and
mediate ICD in cancer immunotherapy [315]. The
manganese zinc sulfide nanostructures have been
demonstrated to mediate DAMP exposure for the
induction of ICD to enhance function of CD8+ and CD4+

T cells [316]. Another function for the induction of ICD
by the nanoparticles is to enhance irradiation-induced
oxidative damage [317].

The stimulation of ICD is of importance for the
development of personalized cancer vaccines for
improving immune reactions in the identification and
attacking tumor cells. The co-application of ICD
inducers along with immune checkpoint inhibitors can
improve anti-cancer immune response and enhance
therapeutic efficacy. However, there are a number of
limitations such as the interactions in the TME that can
impair the immune responses, reducing the efficacy of
ICD-based therapeutics. Moreover, ICD cannot be
observed in the all tumor cells, providing the
heterogeneous therapeutic responses. The interaction of
ICD and immune reactions is complex and required
more investigation to be fully understood.

7. Pyroptosis

Another kind of cell death is pyroptosis that is mediated
by the caspase family through induction of
inflamamsomes and the cleavage of GSDM proteins.
Then, the induced GSDM proteins expose their N-
terminal domain and they transfer into the cell
membrane for pore induction [318-320]. These pores
can mediate the release of cellular components and
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cytokines including IL-18 and IL-1β to accelerate an
inflammatory response [319,321]. The GSDMD protein
can be cut in the junction region by upregulated
caspase-1/4 or caspase-11. Then, GSDMD-NT is
released upon cleavage to mediate pyroptosis [322-324].
The GSDME-induced pyroptosis has been shown in the
different kinds of tumors by multiple compounds [325-
327]. The cleavage site of GSDME is DMPD and it can
be cleavage by caspase-3 [328,329]. Cisplatin and the
small molecule inhibitors have been shown to facilitae
GSDME-induced pyroptosis in lung cancer [330,331].
5-flourouracil has been also shown to upregulate
caspase-3 and mediate GSDME cleavage in chaning
caspase-3-induced apoptosis into pyroptosis [332].
Lobaplatin has been shown to enhance ROS generation
and upregulate JNK in colorectal tumor. Then,
recruitment of BAX into mitochondria occurs to release
cytochrome C and induce caspase-3/9 for the induction
of GSDME-accelerated pyroptosis [333]. In liver cancer,
neobavaisoflavone has been shown to enhance ROS
generation and mediate caspase-3/GSDME axis in
promoting pyroptosis [334]. Notably, the micelles
designed for the co-delivery of nitric oxide and
paclitaxel are able to enhance ferroptosis, ER stress and
pyroptosis together to promote response of liver cancer
cells to paclitaxel chemotherapy [335]. Moreover,
pyroptosis may possess an immunogenic function and
its induction enhances cancer immunotherapy [336].

The different kinds of stimuli have been understood to
mediate GSDM protein fragmentation to induce
pyroptosis and trigger the release of LDH, IL-1β, and
HMGB1. GSDMD and GSDME can be cleaved by
caspases to mediate pyroptosis [329,337]. The
transcriptional suppression of DRP1-induced
mitochondrial fission by ruxolitinib can enhance
apoptosis and pyroptosis in thyroid cancer [338]. The
loss of ZNF-148 can increase the generation of ROS and
mediate apoptosis and pyroptosis [339]. In addition, the
elevation in the levels of TNF-α, IL-1β, IL-18, and LDH,
and upregulation of NLRP3, ASC and capsase-1 can
mediate pyroptosis in gastric cancer [340]. Notably, the
suppression of pro-survival mitophagy and enhancement
in pyroptosis by the biomimetic nanostructures
delivering Ca@GOx to mitochondria can impair
tumorigenesis [341]. Moreover, the induction of
GSDME-induced pyroptosis can increase the sensitivity
of colorectal cancer into anti-PD-1 therapy [342].
Moreover, it has been shown the inhibition of
pyroptosis by lncRNA Malat1 can impair the function
of T cells in the removal of metastatic cells [343].

Similar to necroptosis and ICD, pyroptosis can also be
realted to the immunotherapy through enhancing release
of inflammatory cytokines and recruitment of immune
cells to the TME. Moreover, the selectivity should be
increased through special induction in the tumor cells
and reducing pyroptosis in the normal cells. There are
still a number of limitations including potential of
pyroptosis for mediating systemic inflammation and
causing damage to the normal tissues. Moreover, due to
the heterogeneous nature of tumors, all the tumor cells
do not respond to pyroptosis inducers. The cancer cells

have also shown resistance to pyroptosis inducers,
providing the fact for the combination therapy.

8. Conclusion, Summary, Limitations and Clinical
Importance

The present study provided a comprehensive discussion
regarding the function of cell death mechanisms in the
regulation of tumorigenesis in human cancers. There are
various major mechanisms in cancer that can be targeted
for the regulation of tumorigenesis. One of the main
mechanisms is the modulation of cell death mechanisms
in cancer. Since different kinds of factors participate in
the cancer development and demonstrate dysregulation
in the different stages of tumorigenesis, it is essential to
develop therapeutics based on targeting the major
mechanisms. One of the major mechanisms with
abnormal alterations in solid and haematological tumors
is cell death. The induction of cell death mechanisms
can impair cancer progression and provide a favourable
prognosis. However, all the cell death mechanisms do
not have a similar function including autophagy that its
stimulation may facilitate the cancer progression. In this
case, the exact function of autophagy should be
highlighted and based on that, the induction or
inhibition of autophagy can be followed. This is also
applicable for pyroptosis that in spite of regulating
immune reactions, it can negatively affect immune
system. The present review discussed the multiple kinds
of cell death mechanisms including apoptosis,
necroptosis, ferroptosis, pyroptosis, autophagy and
immunogenic cell death. The stimulation of apoptosis,
ferroptosis and immunogenic cell death can
significantly impair the progression of human cancers.
However, necroptosis, pyroptosis and autophagy exert
dual roles in the regulation of cancer and more attention
should be on their induction or inhibition. The
development of cell death regulators can provide a
milestone in the treatment of human cancers and their
future application in the clinical trials depends on their
biocompatibility and long-term safety. In this case, the
phytochemicals and natural-based nanoparticles are of
importance. The investigation of cell death mechanisms
in cancer and the current limitations can be summarized
as follows:

A) The stimulation of apoptosis can impair the
progression of human cancers. The inhibition of DNA
damage repair mechanisms in acceleration of apoptosis
in cancer requires more investigation. Furthermore,
apoptosis can be regulated by autophagy in which pro-
death autophagy enhances apoptosis in tumor cells. In
order to accelerate the apoptosis induction in tumor cells,
it is suggested to use apoptosis inducers along with
survival inhibitors to significant improve cancer
suppression. Moreover, apoptosis can be used in
combination therapy along with immunotherapy.
Therefore, the novel phytochemicals and drugs with
high efficacy should be introduced to accelerate pro-
death autophagy in promoting apoptosis in tumor cells.
One of the advances in the field of cancer therapy is the
application of nanoparticles for the acceleration of
apoptosis. However, phytochemicals have desirable
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biosafety and their clinical application can be followed.
For the future application of nanoparticles in clinical
trials in the induction of apoptosis, a focus should be
made on their biocompatibility and long-term safety that
lipid-based nanostructures are good option. Moreover,
the physico-chemical features and the aggregation of
nanoparticles may be changed upon large-scale
production that the development of effective and simple
methods are required. Finally, for the development of
biocompatible nanoparticles, it is suggested to develop
them from green sources such as chitosan,
B) Autophagy is a programmed cell death pathway that
in contrast to apoptosis, the investigations on various
species and different cancers have not provided a certain
function for autophagy. Therefore, the studies have
shown that autophagy may exert both tumor-promoting
and tumor-suppressing functions in cancer. As a result,
the regulation of autophagy in the treatment of cancer
should be followed upon determining its function. The
direct autophagy regulators including AMPK, Beclin-1
and mTOR can be utilized as biomarkers for cancer
prognosis and diagnosis. The regulation of autophagy
by non-coding RNAs has been investigated, but more
focus should be on the role of chromosome instability
and DNA methylation on autophagy function. In
addition to the regulation of proliferation and cell death,
the increasing evidences have shown that autophagy has
a tight association with the metastasis of human cancers,
providing its impact more than regulation of cell death.
Autophagy can affect the metastasis of tumor cells [344-
347] and it also shows interaction with EMT in human
cancers [348-350]. Hence, therapeutic regulation of
autophagy can affect both proliferation and metastasis
of cancer cells. In addition, the growing evidences have
highlighted the function of autophagy in the regulation
of cancer drug resistance [351-353]. Therefore, the
inhibition of pro-survival autophagy can enhance
chemosensitivity. In addition to drugs, the nanocarriers
have been shown to regulate autophagy in a targeted
way that can significantly affect the tumorigenesis [354-
356]. Immunotherapy has been also emerged as a
potential therapeutic modality for the tumors and
autophagy interaction with the different components of
immune system especially T cells, B cells and dendritic
cells for clinical treatment of patients should be
evaluated.
C) Necroptosis is another kind of cell death that can be
also regulated in the treatment of cancer. The tumor
cells that are resistant to apoptosis may still demonstrate
sensitivity to necroptosis. Apoptosis is caspase-
dependent and non-inflammatory mechanism, while
necroptosis is an inflammatory cell death and caspase-
independent that through inducing pore in the cell
membrane and release of cellular components may
cause inflammation. However, it should be noted that
inflammation caused by necroptosis may affect cancer
progression, providing some concepts for the
combination with cancer immunotherapy. The key
factors regulating necroptosis including RIPK1, RIPK3
and MLKL can be targeted for the cancer therapy. The
combination of necroptosis induction with conventional
treatments including chemotherapy and radiotherapy
can enhance the potential in the tumor suppression.

Because of the release of DAMPs during necroptosis
induction, the acceleration of immune system may be
observed, since DAMPs are able to induce dendritic
cells and other kinds of immune cells. Therefore, the
combination of necroptosis induction along with
immune checkpoint inhibitors including anti-PD-1 or
anti-CTLA-4 can enhance the efficacy of cancer
immunotherapy. However, the underlying mechanisms
contributing to the necroptosis resistance in cancers has
been ignored in the recent years and more studies are
required to highlight the function of genomic and
epigenetic factors.
D) Ferroptosis is an iron-dependent cell death that can
be caused through increase in lipid peroxidation, ROS
levels and decrease in GPX4 activity. The iron chelators
have been shown to reduce ferroptosis. The stimulation
of ferroptosis has a significant potential not only in
reducing proliferation and survival, but also can impair
metastasis in tumor cells. In order to induce ferroptosis
in tumor cells, nanoparticles have been of importance,
since they can selectively mediate ferroptosis.
Furthermore, nanoparticles can be developed in a redox-
sensitive way to mediate GPX4 depletion in enhancing
ferroptosis. A number of pathways including Nrf2 can
increase the antioxidant activity and decrease ROS
generation to reduce ferroptosis. The inhibition of
ferroptosis can mediate drug resistance in human
cancers, Since ROS is vital for lipid peroxidation, a
strategy can be increase in MDA levels and ROS levels
to facilitate ferroptosis.
E) The ICD is of importance for the induction of anti-
cancer immunity. The release of DAMPs including CRT,
HMGb1 and ATP can participate in ICD-mediated
immunity. This activates the DCs to induce T cell
responses for the elimination of tumor cells. The ICD
can be combined with other kinds of therapies including
chemotherapy, radiotherapy and immune checkpoint
inhibitors to exert synergistic impact. The drug
discovery and high-throughput screening of chemical
libraries can participate in the development of new ICD
inducers in cancer therapy. Moreover, the nanoparticles
have been emerged as potential inducers of ICD in
cancer therapy. The ICD can be utilized for the
development of vaccines in cancer therapy. Among the
various cell death mechanisms, the role of epigenetic
factors, especially non-coding RNAs in the regulation of
ICD has been ignored. Moreover, nanoparticle-induced
autophagy can enhance ICD-related cancer
immunotherapy.
F) Overall, three factors are responsible for the
induction of pyroptosis including inflammatory
caspases (aspase-1, caspase-4, caspase-5, and caspase-
11), GSDMD protein and inflammasome. The direct and
indirect strategies can be utilized to mediate pyroptosis
in cancer therapy including direct induction of caspases
or inflammasomes, and the indirect way is the
development of an inflammatory TME. The induction of
pyroptosis can be combined with chemotherapy,
radiotherapy and immunotherapy to enhance tumor
suppression. The microbiome can be also regulated to
induce inflammasomes and mediate pyroptosis in cancer
therapy. However, there should be more effort regarding
the selective induction of pyroptosis in the tumor cells
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and minimizing the impact on normal cells. Moreover,
the systemic inflammatory responses should be
managed to prevent excessive inflammation and damage
to the normal tissues.
G) In the recent years, the application of nanoparticles
for the treatment of cancer has significantly increased.
The nanostructures have been widely applied for the
drug delivery [357], gene delivery [358], cancer
phototherapy [359], immunotherapy [360], vaccine
development [361], radiosensitivity [362] and
chemosensitivity [363] to further improve the efficacy
of conventional therapeutics in tumor suppression. In
terms of cell death mechanism, although different kinds
of modulators, small molecules and drugs have been
developed, there is still a challenging issue that is the
poor targeting feature of these therapeutics. Therefore,
nanostructures have been introduced for the selective
regulation of cell death mechanisms in cancer therapy.
Nanoparticles can regulate apoptosis [364], autophagy
[354], necroptosis [365] and immunogenic cell death
[316], among others in improving tumor fight.
Moreover, the biomimetic nanostructures have been
widely applied in the treatment of cancer [366].
Therefore, their potential in the regulation of cell death
mechanisms requires more attention, as these structures
demonstrate high biocompatibility. Moreover, hydrogels
have been recently introduced for the treatment of
cancer [367] and their potential in the sustained delivery
of bioactive molecules in controlling cell death
mechanisms requires investigation.
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